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Abstract—Chatbots are increasingly used in educational in-
stitutions to answer student inquiries. However, existing models
often struggle with inconsistent data, leading to incorrect re-
sponses. This issue is particularly challenging in environments
where the data is frequently updated, creating inconsistencies
with the past information on which the chatbot was trained.
Although many chatbot models have been developed, there is
limited research on how to handle such dynamic, evolving data
in an educational context. This project aims to develop a robust
chatbot for our school, capable of providing accurate answers
and addressing the issue of inconsistencies in data. We built and
tested several models, including building an SLM from scratch,
fine-tuning a previously trained Small Language Model (SLM),
and using the Retrieval-Augmented Generation (RAG) approach.
We evaluated their performance in tasks involving ambiguous
or incomplete queries. The models were assessed based on the
relevance, precision, and adaptability of the response to changing
data. Among them, the Retrieval-Augmented Generation (RAG)
model showed the highest adaptability and robustness. The RAG
model offers a reliable solution for a school chatbot, effectively
handling frequent updates and providing accurate answers to all
student inquiries about school life and campus-related matters.

Index Terms—large language model (LLM), small language
model (SLM), machine learning, chatbot, neural networks, trans-
fer learning, energy, data scrapping, natural language processing,
Retrieval-Augmented Generation.

I. INTRODUCTION

The first conceptualization of the chatbot is attributed to
Alan Turing, who raised the fundamental question: ’Can ma-
chines think?’ Through his work on the ’Imitation Game’ (now
known as the Turing Test), Turing laid the foundation for ma-
chines designed to simulate human-like conversation [1]. This
early vision has since evolved into the chatbot, a computer
program that communicates with people by providing answers
to their questions. By processing natural language input, the
chatbot can generate intelligent and contextually appropriate
responses, as seen with ChatGPT, Siri, or Alexa [2]. Before
reaching this level of sophistication, chatbots started with
simple systems like ELIZA, created in the 1960s by Joseph
Weizenbau. ELIZA relied on simple keyword matching and
predefined responses, which limited its ability to handle com-
plex or varied conversations [3]. Over time, the introduction of
machine learning algorithms and natural language processing

(NLP) technologies significantly improved the functionality
of chatbots. These advancements enabled chatbots to provide
highly dynamic and contextually accurate interactions.

Nowadays, the desire for human-like machine communica-
tion is growing across various sectors, including education. In
schools and universities, chatbots are increasingly being used
to answer student and staff questions [4]. They help provide
information on school matters or administrative tasks, creating
more efficient and accessible communication channels. How-
ever, in this particular context, data is constantly updated - with
changes in schedules, new rules, and evolving information
- which can lead to inconsistencies or contradictions in the
chatbot’s responses. This creates a need for a more flexible,
adaptive model capable of handling such dynamic and often
inconsistent data. Therefore, selecting the right chatbot model
is key to improving student support services. Through this
paper, we will demonstrate why the Retrieval-Augmented
Generation (RAG) model is the most compatible solution for
this purpose.

II. RELATED WORK

A. Definitions

The technological advances of recent decades have accel-
erated the development of chatbots. Key breakthroughs in
Machine Learning (ML), Deep Learning (DL), and Natu-
ral Language Processing (NLP) enabled chatbots to evolve
from simple keyword-based systems to highly sophisticated
conversational agents. ML algorithms allowed chatbots to
learn from vast datasets, improving their ability to generate
relevant responses. Subsequently, Deep Learning, particularly
with neural networks, for example those built on transformers,
enhanced their capacity to understand and generate complex
language, while NLP techniques refined their comprehension
of grammar, context, and sentiment [5]. These combined
advancements have made possible the creation of highly intel-
ligent systems like ChatGPT, capable of engaging in nuanced,
human-like conversations across a wide range of topics.



B. Existing LLMs and their architectures

Artificial intelligence models are generally based on Dense
Neural Networks, which are mathematical models inspired by
the functioning of the human brain. They consist of artificial
neurons organized into layers: an input layer, hidden layers,
and an output layer. Each neuron receives data, transforms
these data using parameters such as weights and biases com-
puted after training, applies an activation function, and then
transmits the result to the next neurons [6].

A Large Language Model (LLM) is characterized by its
large size, measured by the number of parameters such as
model weights, and its ability to process and generate text in a
sophisticated manner. Introduced in 2017 by Google engineers
[7], the Transformer was originally designed for machine
translation. It is the architecture behind GPT (Generative
Pre-trained Transformer) and all other LLMs that are now
proliferating in the AI field.

The Transformer architecture consists of two main parts: the
encoder and the decoder. It includes Dense Neural Networks
(Feed Forward) and relies on a key mechanism: attention. The
encoder transforms an input sequence composed of symbolic
representations (words, characters, etc.) into a sequence of
continuous representations which are numerical vectors that
represent the properties of the symbols, their meanings, syn-
tactic roles, contextual relationships, etc. The decoder then
generates an output sequence composed of symbols (words),
one element at a time. At each step, the model is auto-
regressive, meaning it uses the symbols previously generated
as additional input to generate the next symbol.

ChatGPT, like other GPT models, is based on millions
or even billions of parameters. These parameters enable the
model to learn rich and complex representations of language.
Table I illustrates the evolution of the number of parameters
in OpenAI’s GPT models since the release of the first version
in 2018 [8] [9].

TABLE I
EVOLUTION OF THE NUMBER OF PARAMETERS SINCE THE FIRST VERSION

OF OPENAI CHATGPT [8] [9]

Version GPT-1 GPT-2 GPT-3 GPT-4
Parameters 117 millions 1.5 billions 175 billions 1.7 trillions

Other architectures for generative AI exist but are currently
less efficient or are tailored to specific use cases, such as Re-
current Neural Networks (RNNs). Unlike traditional networks,
RNNs have recurrent connections that allow them to retain
information from previous states.

C. Training and Fine-Tuning

The training of LLMs, such as those based on the Trans-
former architecture, relies on several key elements: vast
amounts of textual data, powerful computing infrastructure,
significant energy consumption, and a skilled workforce for
data cleaning and supervision.

Training consists of two distinct phases. The first phase is
task-agnostic pre-training, where the model learns semantic
representations of words across contexts using self-supervised
techniques, such as auto-regressive language models and auto-
encoders. This phase utilizes large-scale data, which may
include text, text-image, or text-video pairs, to build foun-
dational knowledge. The second phase is fine-tuning, where
the model is adapted for specific tasks using smaller domain-
specific datasets. This step allows the model to specialize
in applications such as classification, structure prediction, or
sequence generation, which will enhance its relevance and
performance [10].

D. Challenges in Data Security

Interactions between users and LLM-based systems often
involve the exchange of sensitive information. Without robust
safeguards, this raises concerns about confidentiality, exposing
sensitive system prompts or user data due to prompt hacking
attacks [11]. Additionally, LLMs are prone to unintentionally
memorize sensitive details from training data or user inter-
actions, potentially leading to privacy violations [12]. These
risks are exacerbated by three types of prompt hacking [11]:
jail-breaking, which bypasses the model’s intended behavior
to extract unauthorized information; prompt injection, which
manipulates responses through malicious inputs; and leaking,
which exploits system prompts or pre-loaded sensitive data.
Such attacks compromise not only data confidentiality but also
the system’s reliability.

To address these challenges, privacy-preserving techniques
like differential privacy, [12] minimize the risk of sensitive
data memorization by ensuring that individual data points
have negligible influence on model outputs [13]. For further
protection, silos are used for data compartmentalization [12].
Additionally, input and output filtering mechanisms block
harmful queries or responses, preventing runtime disclosure of
sensitive data [14]. Finally, robust training methods, including
adversarial training and the use of synthetic data [11] [14],
improve model resilience to adversarial inputs and reduce
vulnerabilities to prompt hacking.

E. Practical Applications of Chatbots

The practical applications of chatbots across various fields
highlight their ability to quickly meet user needs while pro-
viding intuitive interactions. Here is a non-exhaustive list of
research on their usage in different contexts:

1) Interactive Assistant for Students: The bilingual Student
Interactive Assistant [15] enhances student experiences with
features like viewing campus maps, setting reminders and
providing Q&A support.

2) Chatbot for Cryptocurrency: I&C Chat [2] retrieves
real-time prices of top cryptocurrencies and answers queries,
simplifying access to financial data in a dynamic industry.

3) Chatbot for Smart Agriculture: A LINE chatbot [16]
helps Thai farmers with crop advice and smart irrigation
controls, achieving high user satisfaction despite its rule-based
limitations.
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These examples illustrate the adaptability of chatbots in ad-
dressing specific needs, whether by improving the educational
experience, supporting financial exchanges, or modernizing
agricultural practices. The ongoing development of intelligent
chatbots promises to expand their reach and effectiveness
across various domains.

III. DATASCRAPPING

A. Method

To collect relevant data for our AI Model, we developed
a web scraping tool targeting specific public pages of the
INSA Toulouse websites. A scraper is a program designed to
automatically extract structured information from web pages.
The scrapper systematically navigates through HTML content,
identifies relevant data elements based on predefined patterns
or selectors, and retrieves them for further processing or
analysis. This technique is particularly valuable when dealing
with dynamic or unstructured web data not readily available
through official APIs (Application Programming Interfaces)
or downloadable datasets. Our scraper was implemented in
Java using java.net package for handling HTTP requests, jsoup
for efficient HTML parsing, and PDFBox for reading and
extracting content from PDF documents

The crawling process begins from a specified root URL and
recursively explores all hyperlinks present on each page. Only
pages whose URLs match a set of authorized domains are
considered for further analysis. For each eligible page, the
scraper extracts and stores the content in a MySQL database,
along with two timestamps: the original publication date (when
available) and the retrieval date of the data. In the case of PDF
documents, the entire textual content of the file is extracted
and saved in the database.

Fig. 1. Architecture of a Web Scraping System

B. Results

After applying our web scraper to the official INSA
Toulouse website as well as to the INSA Toulouse Moodle
platform, a total of 6,215 web pages were collected over an
execution time of approximately 20 minutes. The extracted
pages contained an average of 717 words each, resulting in a
cumulative corpus of 4,453,313 words. Among all retrieved
pages, the last modification date could be successfully ex-
tracted for only 3,426 of them, representing approximately
55% of the dataset.

C. Interpretation of Results

Despite the large volume of text collected, several limita-
tions affect the quality and completeness of the extracted data:

• Information embedded in images has not been captured,
resulting in the loss of potentially valuable content.

• A significant number of PDF files are scanned documents
composed primarily of images, from which no textual
information can be extracted.

• Due to the lack of image processing, many websites
lose essential content—sometimes all meaningful infor-
mation—leaving only irrelevant elements stored in the
database.

• In PDF documents, tables are often poorly extracted or
entirely ignored, leading to the loss of structured data that
may be critical for analysis.

Despite these limitations, the scraper successfully retrieved
the majority of essential information from the INSA Toulouse
website. While certain types of content - particularly images,
scanned documents, and complex table structures - remain
partially or fully inaccessible, the volume of collected tex-
tual data is sufficient to support a meaningful analysis of
the information made publicly available by INSA Toulouse.
Overall, the scraping process proved to be an effective solution
for large-scale academic data collection within a limited time
frame.

IV. MODEL FROM SCRATCH

A. Method

We started by building a small language model (SLM) from
scratch. The architecture we implemented features a context
window of 2048 characters, 6 transformer layers, 6 attention
heads, and a dropout rate of 0.2. The model was developed
using PyTorch and trained across multiple machines in a
distributed setup.

We explored two different tokenization strategies to assess
their impact on model performance. The first is a simple
character-level tokenizer that assigns a unique token to each
character. The second is Tiktoken [17], a subword-level tok-
enizer optimized for performance and compression.

We conducted two separate training runs, each starting from
randomly initialized weights. The first model was trained
on a corpus of Shakespearean texts, while the second was
independently trained on the French Wikipedia dataset. There
was no transfer learning or continued training between the two
runs.

B. Results

The model built from scratch was tested with basic ques-
tions but failed to generate relevant responses. After training
the model with different parameters, we observed varying
outcomes. The results are summarized in Table III, from which
the following key observations can be made:

• The base models Scratch-v0.0 and
Scratch-v2.0 were further trained to produce
Scratch-v0.1 and Scratch-v2.3, respectively.
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TABLE II
SCRATCH MODEL RESULTS WITH DIFFERENTS PARAMETERS

Name Training Device Language Dataset Final Loss Context
Size

Batch
Size

Duration

Scratch-v0.0 Intel Core i7-
8700

English Shakespeare
(2 MB)

1.1268 192 32 03:24:00

Scratch-v0.1 Intel Core i7-
8700

English Shakespeare
(2 MB)

0.8046 192 32 06:11:00

Scratch-v1.0 2xGPU NVIDIA
RTX A4500

English Shakespeare
(2 MB)

0.9041 512 32 00:28:00

Scratch-v2.0 2xGPU NVIDIA
RTX A4500

French Wikipedia
(10 GB)

1.0603 512 32 00:27:00

Scratch-v2.3 2xGPU NVIDIA
RTX A4500

French Wikipedia
(10 GB)

0.6484 512 48 03:31:00

TABLE III
SCRATCH MODEL : PROMPT AND ANSWER

Model Prompt Answer
Scratch-v0.0 Ay, sir; well, well. Ay, sir; well, well. What say,

Traitor and the great Bolingbroke glory ? Sweets,
Your host royal but thine is the cholery
With brice and flesh burning weeks. If we amend,
Let them apon, with nighter you owe hear.

Scratch-v0.1 Ay, sir; well, well. MENENIUS:
God-den hour! What, will I see thee?

Scratch-v1.0 Ay, sir; well, well. Threat perily, and heact it in him:
O, ‘t; thou art young, and you ha’ll off all,
Beseech you, sir, you must come not; but what
Dight neither of your pempty; and look to them!
Ah, even half, did forfeit duty climay.

Scratch-v2.0 La France, en
forme longue
la République
française

La France, en forme longue la République française et
continuitéaire. Elle se rétractonne par réprime insectes à
l’Argylliendra alors lors des changement.

Scratch-v2.3 La France, en
forme longue
la République
française

La France, en forme longue la République française. Le port
de Joinville est situé la ligne de Volchingen Battle a réserve hit
interbranche en Arielle.

• Scratch-v0.0 and Scratch-v0.1 were trained on
a CPU using a small dataset (2 MB) and a limited
context size (192 tokens). These models demonstrated a
significant reduction in loss, from 1.1268 to 0.8046, over
a total training time of 6 hours and 11 minutes.

• Scratch-v1.0, trained on an RTX A4500 GPU with
the same dataset (2 MB) but a larger context size (512
tokens), completed training in 28 minutes and achieved
a final loss of 0.9041.

• Scratch-v2.0, which used the same parameters as
Scratch-v1.0 but with a significantly larger dataset
(10 GB), had a comparable training duration of 27
minutes but a higher final loss of 1.0603.

• Finally, Scratch-v2.3, trained under the same con-
ditions as Scratch-v2.0 but with an increased batch
size (48), achieved a notably lower loss of 0.6484. The
total training time across all four sessions was 3 hours
and 31 minutes.

C. Interpretation of Results

The model built from scratch did not produce usable results
for the INSA AI chatbot. This was mainly due to limitations
in time and resources (working with a single NVIDIA RTX

TABLE IV
DATA EXTRACTS: SHAKESPEARE - CORIOLANUS AND WIKIPEDIA -

FRANCE

Shakespeare - Coriolanus
First Citizen:
Ay, sir; well, well.

MENENIUS:
’Though all at once cannot
See what I do deliver out to each,
Yet I can make my audit up, that all
From me do back receive the flour of all,
And leave me but the bran.’ What say you to’t?
French Wikipedia - France
La France, en forme longue la République française, est un État souverain
transcontinental dont le territoire métropolitain s’étend en Europe de
l’Ouest et dont le territoire ultramarin s’étend dans les océans Indien,
Atlantique et Pacifique, ainsi qu’en Antarctique et en Amérique du Sud.

A4500 GPU). To reach our goal, the model would have
required significantly more training time (e.g., two weeks as
with GPT-2) and greater computational power, such as larger
GPUs or even TPUs. This would have allowed us to train on
a larger dataset and scale the model’s parameters.

Table III shows that the final model cannot answer basic
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prompts, even though it had been trained four times. Our first
attempt was to prompt part of a sentence in the dataset to see
if the model would answer the rest of the sentence. However,
the model answered only part of the sentence and it would
then follow it with incomprehensible sentences. Our model
even failed to learn the languages (French and Shakespearean
English).

In conclusion, the Scratch model is not a practical approach
for building a Chatbot for academic purposes. The model
requires more resources and time to be trained and then fine
tuned to suit our goal. However, this attempt gave us valuable
insights into the architecture, requirements, and challenges
involved in developing a SLM. These lessons guided us in
exploring alternative, more feasible strategies for building the
INSA Chatbot.

V. FINE-TUNING GPT-2 WITH SCHOOL DATA

A. Method

Another approach we explored was fine-tuning an existing
pretrained SLM to adapt it to our school’s needs. This allowed
us to benefit from the capabilities of a mature model while
tailoring it to our school’s specific language and content. We
chose the GPT-2 architecture for its open availability, strong
performance, and suitability for text generation tasks. To train
it, we used a custom dataset built from the content of internal
school websites and official documents.

The data was retrieved from a structured database using
SQL (Structured Query Language), which is a simple text-
based language used to extract information from databases.
Due to resource constraints, we limited the dataset to 100
entries.

Before training, the data was converted into a format
compatible with the Hugging Face Transformers library —
a widely used tool for working with language models. We
then processed the text using GPT-2’s tokenizer. This step
breaks each document into small units called tokens, which
the model uses to learn and generate language. Since GPT-2
lacks a built-in padding token (used to align text lengths), we
used its end-of-sentence token for padding to keep input sizes
consistent.

The model was fine-tuned over 3 complete passes through
the dataset (epochs). We used a small batch size of 2 examples
to match the limited computing power available. Training
was conducted on a local machine (13th Gen Intel Core i7-
13700H), and progress was logged and saved regularly.

Key training settings included:
• Model: GPT-2 (pretrained)
• Epochs: 3
• Batch Size: 2
• Sampling Method: Nucleus sampling (top-p = 0.9), with

temperature = 0.7
• Max Response Length: 100 tokens
These settings were chosen to ensure responses were both

coherent and varied. After training, the model was saved and
integrated into a simple chatbot interface, allowing users to

submit questions and receive answers based on the school’s
internal knowledge.

B. Results

After fine-tuning the GPT-2 model on our dataset, we evalu-
ated its performance by testing how accurately it responded to
a set of 100 common student and staff queries. Each generated
answer was evaluated using a manual scoring rubric with the
following criteria:

• Relevance (Did the answer address the user’s question?)
• Clarity (Was the response understandable and well-

structured?)
• Factual Accuracy (Was the information correct based on

internal documents and databases?)
• Completeness (Did the response include all necessary

details to satisfy the query?)
Answers were rated on a 3-point Likert scale by two

independent evaluators:
• 0 = Unacceptable (incoherent, or incorrect)
• 1 = Partially acceptable (some correct info, but missing

context or clarity)
• 2 = Acceptable (clear, accurate, and complete)
Only answers scoring 2 from both evaluators were consid-

ered ”acceptable” in our final metric. The results showed that,
on average, only 3.82% of the generated answers were consid-
ered acceptable. This performance fell well below expectations
and indicated that the model struggled to generalize effectively
from the limited dataset.

In addition to the low accuracy, the training process itself
proved to be highly resource-intensive. Due to limited access
to computing power, we were only able to use CPUs, which
significantly increased the training time. Having access to
GPUs or TPUs would have improved both training efficiency
and model performance by enabling faster and more scalable
processing of data.

Another major limitation was the model’s poor adaptabil-
ity to changing data — a critical requirement in a school
environment. School-related information, such as schedules,
deadlines, or policies, is frequently updated. To keep the GPT-
2 model accurate, it would need to be retrained every time
the data changes. This retraining process is not only time-
consuming and expensive, but also environmentally costly due
to high energy consumption.

Furthermore, retraining does not solve deeper problems such
as data inconsistencies. For example, two different sources
might contain conflicting information about deadlines or reg-
ulations. GPT-2, even when fine-tuned, has no mechanism to
reason through these contradictions or prioritize one source
over another. Each time such an inconsistency arises, another
round of fine-tuning would be required — a process that is
clearly not sustainable.

Given these limitations, it became clear that fine-tuning
GPT-2 alone was not a viable long-term solution for our
use case. We needed a model that could access and reason
over up-to-date information dynamically, without requiring full
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retraining. This led us to explore an alternative architecture:
Retrieval-Augmented Generation (RAG).

VI. RETRIEVAL-AUGMENTED GENERATION (RAG)

A. Method

The RAG (Retrieval-Augmented Generation) [18] approach
combines semantic information retrieval techniques with text
generation by a language model. The process begins with the
handling of a raw document (e.g., a text file). This document is
first segmented into fixed-size units (1,000 characters) with a
certain amount of overlap, using the tool CharacterTextSplitter.
This step aims to produce segments that are short enough to be
usable while maintaining the local coherence of the content.

Each resulting segment is then converted into a numerical
vector using a pre-trained embedding model [19] (MiniLM via
the HuggingFaceEmbeddings library). These embeddings are
dense, continuous representations of texts, where the proximity
between vectors reflects the semantic similarity between the
corresponding texts. For example, words or expressions with
similar meanings in a given context (such as “exam,” “assess-
ment,” or “result”) will be represented by nearby vectors in the
embedding space. These vectors are subsequently stored in a
vector database, here Facebook AI Similarity Search (FAISS)
[20], designed to enable fast retrieval of the vectors closest to
a given query vector according to a distance metric.

When the user submits a question, it is also converted into a
vector using the same embedding model. This vector is used to
query the FAISS database in order to retrieve the text segments
whose representations are closest to that of the question.
These identified segments are considered relevant context. The
context is concatenated with the original question to form a
structured prompt, which is then passed to a language model
for answer generation. This procedure helps to overcome the
limitations of the generation model by dynamically providing
it with specialized external information.

The generation model used in this system is Mixtral-
8x7B, a Mixture of Experts (MoE) model based on the
Transformer architecture. The Transformer architecture [7] is
now a reference in natural language processing. It is built
from a stack of identical layers, each consisting of two main
subcomponents: a multi-head self-attention mechanism and a
feed-forward network. The attention mechanism allows the
model to dynamically weight the importance of different
parts of the input sequence, capturing long-range contextual
relationships. The multi-head attention mechanism thus learns
to establish connections between words within a sentence.
For example, it learns that in the sentence “This major is
hard,” the word “This” is linked to “major,” and that “hard”
qualifies “major.” The feed-forward network then applies two
linear layers separated by an activation function (often ReLU),
enhancing the model’s capacity for nonlinear transformation
of representations.

Mixtral-8x7B adopts this structure while adapting it to the
MoE paradigm. The principle of MoE is to include multiple
specialized sub-models (the experts), of which only a subset is
activated at each forward pass. In the case of Mixtral, there are

8 experts (each with around 7 billion parameters), but only two
are dynamically selected by a “gating” layer, which decides,
based on the input, which experts are most suitable.

Thus, the complete method enables the generation of con-
textualized responses by combining information retrieval from
an external vectorized corpus with the advanced linguistic
capabilities of a large Transformer-based model, Mixtral-
8x7B.

Fig. 2. RAG Pipeline Architecture

A RAG system used in the institutional chatbot is vulnerable
to data inconsistency and the lack of relevant information. If
the underlying knowledge base contains outdated, contradic-
tory, or poorly structured content, the chatbot may produce
misleading or incoherent answers. When relevant data is
missing or incomplete, the model struggles to provide accurate
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and contextually appropriate responses, reducing the overall
reliability of the system.

We explored the detection of contradictions within the
retrieved data by leveraging cosine similarity as our evaluation
metric. Specifically, we measured the semantic distance be-
tween each chunk and its nearest neighbor in the FAISS index
for each question of our dataset. Chunks exhibiting a very high
similarity score were flagged as potentially contradictory.

We also investigated the detection of insufficient context
using several approaches, including cosine similarity, a cross-
encoder re-ranker, and binary classification. In each case,
we evaluated the method by testing it on manually written
questions—some of which could be answered using a specific
document, while others could not. We initially used a cross-
encoder re-ranker based on ms-marco-MiniLM-L-6-v2 to im-
prove retrieval performance, and later identified its potential
for assessing whether the retrieved context adequately supports
answering a given question. This offers a valuable signal
for evaluating the effectiveness of the retrieval component
within the RAG pipeline. Additionally, we trained a binary
classification model on the ConditionalQA dataset (Sun et
al., 2021) specifically to assess context sufficiency, leveraging
its challenging questions and logically complex documents to
enhance our detection capabilities.

B. Results

The system was tested using a Streamlit interface, as shown
in Fig. 3, with the INSA Toulouse academic regulations in raw
text format as its reference document. The prompt used guides
the model toward the role of an institutional assistant, with
concise answers always in French. The assistant is expected
to state that it does not know the answer when applicable.

Fig. 3. Graphical interface of IAN

A set of questions was formulated to assess two aspects:
the ability to accurately answer questions related to academic
policies and the ability to maintain simple general conversa-
tion.

Out of a total of 8 questions (6 in the first category and
2 in the second), the model provided a relevant answer in 7
cases. Detailed test results, including the questions, answers,
and their English translations, are presented in Tables V and
VI.

For questions related to INSA, responses correctly referred
to the source text when the relevant information was included
in the dataset. Otherwise, answers could be influenced by
external knowledge from the Mixtral model base, leading to
inaccuracies. General questions were handled smoothly, with
responses suited to basic conversational exchange.

Performance was evaluated subjectively based on three
criteria:

• Criterion C1: Relevance of the answer to the question.
• Criterion C2: Alignment with the regulation content (if

applicable).
• Criterion C3: Compliance with prompt constraints (lan-

guage, conciseness, tone).
A subjective grade from A (criterion fully met) to D

(criterion not met at all) was assigned to each question/answer
pair in the test.

C. Interpretation of Results

The results indicate that our RAG system, combined with
the Mixtral-8x7B model, is capable of producing appropriate
answers within a restricted institutional context. The quality of
the answers directly depends on the coverage of the indexed
corpus.

The RAG system provided targeted answers based on the
content of the academic regulations, demonstrating the effec-
tiveness of the semantic retrieval approach. Even when the
question did not exactly match the wording in the source
text, the model was able to generate coherent answers, which
reflects both robustness and good generalization capabilities.

However, the model is entirely dependent on the supplied
corpus and lacks explicit ambiguity handling. As a result, it
may sometimes respond in an overly general manner, poten-
tially producing incorrect answers when queries are imprecise
or when the required information is not present in the corpus.

Detecting similarities with cosine similarity works well
when the conflicting pieces of information are expressed with
similar wording, allowing the similarity score to highlight po-
tential inconsistencies. However, it proves ineffective when the
formulations differ significantly, as semantically contradictory
statements with distinct phrasing often yield low similarity
scores, making them harder to detect.

In our results, we applied a refinement function that removes
short words and experimented with varying chunk sizes. For
each configuration, we measured the distance to the nearest
neighbor for every chunk. While the average distance remained
relatively stable across different settings, we observed that
the maximum distance decreased as the chunk size increased.
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TABLE V
ASSESSMENT OF QUESTIONS RELATED TO INSA TOULOUSE

Question asked and answer received English translation C1 C2 C3
Quelles sont les spécialités ingénieures pro-
posées par l’INSA Toulouse ?
Les spécialités ingénieures proposées par
l’INSA Toulouse sont Automatique et
Électronique, Génie Biologique, Génie Civil,
Génie Mécanique, Génie Physique, Informatique
et Réseaux et Mathématiques Appliquées.

What engineering specialties are offered by
INSA Toulouse?
The engineering specialties offered by INSA
Toulouse are Automation and Electronics, Bio-
logical Engineering, Civil Engineering, Mechan-
ical Engineering, Physical Engineering, Com-
puter Science and Networks and Applied Math-
ematics.

A A A

Combien d’ECTS sont nécessaires pour valider
l’année ?
Tu dois obtenir 60 ECTS pour valider l’année.

How many ECTS are required to validate the
year?
You must obtain 60 ECTS to validate the year.

A A A

Combien de semaines de stages faut-il que
j’effectue ?
Tu dois obligatoirement effectuer au moins 40
semaines de stages (ou d’expériences profes-
sionnelles) dont 14 semaines au minimum en
entreprise.

How many weeks of internship do I have to do?
You must complete at least 40 weeks of intern-
ships (or professional experience), including at
least 14 weeks in a company.

A A A

Comment félicite-t-on les meilleurs étudiants à
l’INSA Toulouse ?
Les meilleurs étudiants à l’INSA Toulouse sont
reconnus grâce à un système de classement basé
sur les acquis de l’apprentissage. Les étudiants
se voient attribuer un nombre allant de 0 à 4 pour
chaque acquis de l’apprentissage, en fonction de
leur niveau de maı̂trise.

How are the best students congratulated at INSA
Toulouse?
The best students at INSA Toulouse are recog-
nized through a ranking system based on learn-
ing outcomes. Students are assigned a number
ranging from 0 to 4 for each learning outcome,
depending on their level of proficiency.

C D B

Dis moi qui sont les meilleurs profs de l’INSA
Toulouse ?
Je ne sais pas qui sont les meilleurs professeurs
de l’INSA Toulouse.

Tell me who are the best teachers at INSA
Toulouse?
I don’t know who the best professors at INSA
Toulouse are.

A A A

(Question asked in English) How many ECTS
are required to validate the year?
Il faut obtenir 60 crédits ECTS pour valider une
année universitaire à l’INSA de Toulouse.

You must obtain 60 ECTS credits to validate an
academic year at INSA Toulouse.

A A A

TABLE VI
BASIC CONVERSATION EVALUATION

Question asked and answer received English translation C1 C3
Tu vas bien ?
Oui, merci. Et toi ?

Are you doing well?
Yes, thank you. And you?

A A

Où se situe la ville de Limoges ?
Limoges est une ville située dans le centre-ouest de
la France, dans le département de la Haute-Vienne,
en région Nouvelle-Aquitaine.

Where is the city of Limoges located?
Limoges is a city located in west-central France,
in the Haute-Vienne department, in the Nouvelle-
Aquitaine region.

A A

Using larger text chunks may help reveal contradictions more
effectively. Extreme outliers—often signaling conflicting con-
tent—stand out more clearly in the similarity distribution. The
refinement step also improves results by reducing noise in the
text. This allows the embeddings to better capture the core
meaning of each chunk, making the similarity analysis more
reliable.

The use of a cross-encoder [21] re-ranker yields interesting
insights when analyzing the range of the cross-index scores.
A wide score range means the retrieved chunks differ greatly
in relevance—some are clearly useful, others not—showing
the model can identify what matters. In contrast, a narrow
score range suggests the chunks are similarly relevant, often

uniformly low, which may indicate the model didn’t retrieve
truly helpful information. In our dataset of 100 questions,
setting an arbitrary threshold at 70% for the cross-index score
range means that any question with a range above this value
is classified as answerable. Using this indicator alone, we
observe that 90.25% of the questions are correctly identified
as either answerable or unanswerable based on the context.

The range of retrieval scores can serve as a useful indicator
of both retrieval quality and the adequacy of the provided
context. A narrow range of low scores may suggest that
the system lacks relevant information and cannot generate
meaningful responses. This makes the score range a potential
metric for evaluating whether the retrieved context is sufficient
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to answer a question. If the context appears inadequate, the
system could use this signal to trigger alternative strategies,
such as expanding or reformulating the query, or retrieving
information from external sources. By tracking the distribution
of retrieval scores, the system can estimate its confidence in
the retrieved content and adjust its behavior accordingly. This
helps reduce the risk of generating incorrect or misleading
answers when context is limited.

A classification model was also trained to detect when the
context is insufficient. The model was only slightly better
than random guessing. Although the results were weak, this
approach still shows promise. It suggests that future work
could focus on designing more specialized models or using
more detailed features to better identify when the context is
not enough to answer a question.

VII. CONCLUSION

With the increasing proliferation of digital platforms and
informational resources, accessing relevant and up-to-date
information has become a growing challenge for students and
staff within academic institutions—INSA being no exception.

Throughout the project, we built and tested several models,
experimenting with different training strategies, datasets, and
hyperparameters to find the most effective approach for cre-
ating a useful and reliable assistant for students and staff. We
also designed a user-friendly interface to facilitate interaction
with the chatbot and provide the best experience for users.
Each iteration provided valuable insights into the strengths
and weaknesses of various architectures, helping us refine our
approach.

After testing multiple configurations, we found that the
RAG model showed the most promise. By combining the
strengths of both retrieval-based and generation-based meth-
ods, RAG demonstrated the ability to provide more accurate,
relevant, and context-aware responses compared to other mod-
els we tested.

However, while the RAG-based chatbot represents a sig-
nificant step forward, there are still areas for improvement.
Future work could focus on fine-tuning the model further,
expanding the dataset, and addressing limitations such as han-
dling dynamic, changing data or improving the system’s ability
to handle complex queries. With continued development, we
believe this chatbot could become an even more valuable tool
for students and staff at INSA, offering real-time, up-to-date
assistance tailored to the institution’s specific needs.

VIII. PERSPECTIVES

During our development process, we explored several ad-
vanced techniques and design strategies that, while not im-
plemented in the current version, show promise for future im-
provements. For instance, the RAG pipeline is computationally
intensive; but certain components could be streamlined. One
example is the query rewriting module, which reformulates
and translates user queries to match the language used in the
FAISS index encoding. The decision to invoke this module

could be optimized using a lightweight classification model
that determines its necessity on a per-query basis.

Another promising research approach involves rethinking
the structure of our vector database. Currently, all embedding
vectors are stored within a single FAISS index, which can
lead to performance bottlenecks as the number of documents
grows. A more efficient and scalable approach is to divide the
data into several FAISS indexes. Each index handles a subset
of documents. These documents can then be organized under a
higher-level FAISS structure. This hierarchical indexing strat-
egy could improve both indexing time and retrieval efficiency,
particularly in large-scale or domain-segmented datasets.

While our current implementation focuses exclusively on
textual data, we did not explore the integration of other data
modalities. Incorporating external tools to access structured
data sources could significantly improve both the quality of
generated responses and the practical capabilities of the RAG
system. For instance, providing the model with access to
structured data such as academic schedules or institutional
databases could enable more precise and context-aware an-
swers to user queries.
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